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Abstract. We study the question which ordinary second order linear differ-
ential equation allows power series solutions whose p-adic radius of conver-
gence is at least one, a question raised by B.Dwork. In particular we shall
consider the case of Fuchsian equations with four singularities and local
exponent differences 0.

1 Introduction

Let P ∈ C[z] be a monic quadratic polynomial with non-zero discriminant
and P (0) �= 0. Let λ ∈ C. Consider the linear differential equation

zP (z)
d2u

dz2 + (zP (z))′ du

dz
+ (z − λ)u = 0 (1)

Note that this is the general shape of a Fuchsian differential equation on P
1

with singularities in four points, including ∞, having local exponents 0, 0
at the finite points and 1, 1 at ∞. By scaling z if necessary we can assume
that P has the form P (z) = z2 +az − 1. Suppose we want to solve (1) by a
power series expansion u(z) =

∑
n≥0 unzn. We then obtain the recursion

relation

(n+1)2un+1 = (an(n+1)−λ)un +n2un−1 (n ≥ 1), u1 = −λu0
(2)

for the coefficients un. Without loss of generality we normalise to the case
u0 = 1.

� Part of this work was supported by EPSRC grant L99920
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When a = 0, λ = 0 we obtain the recurrence

(n + 1)2un+1 = n2un−1

having the solution u2n =
(2n

n

)2
/16n, u2n+1 = 0. Note that this solution

consists of rational numbers which contain only 2’s in the denominator. We
call such numbers S-integers, where S = {2}. More, generally, letting S be
any finite set of primes p1, . . . , pr, the ring of rational numbers having only
products of the pi as denominator is called the ring of S-integers. Notation:
ZS .

When a = 11, λ = −3 we obtain the famous recurrence found by
R.Apéry in 1978,

(n + 1)2un+1 = (11n2 + 11n + 3)un + n2un−1

having the solution un =
∑n

k=0
(
n
k

)2(n+k
k

)
in integers. Observe that in the

recursion (2) we divide by (n + 1)2 at every step. So one would expect
the denominator of un to grow like (n!)2. This is what usually happens.
However, for some choices of a, λ the un turn out to be S-integral for a given
set of primes S. It is hopefully clear that the two above examples are quite
exceptional in that they have S-integral solutions for some set S. By way of
illustration we show at the very end of the paper that the only integer λ ∈ Z

for which the recurrence (n + 1)2un+1 = (11n2 + 11n − λ)un + n2un−1
has an integral solution, is λ = −3. This case corresponds to Apéry’s above
mentioned recurrence.

The main question would be the following

Question 1 Let S be a finite set of primes. Given a ∈ Q, for which λ ∈ Q

does (2) have a solution u0, u1, . . . ∈ ZS ?

Or, more generally over the algebraic numbers,

Question 2 Let S be a finite set of primes and denote by OS the set of
algebraic numbers that are integral outside the places above S. Given a ∈ Q,
for which λ ∈ Q does (2) have a solution u0, u1, . . . ∈ OS?

Questions of this type have been addressed frequently in the work of
B. Dwork, see [6, Sect. 7],[7], [8]. Dwork’s motivation for looking at this
problem is a conjecture of Bombieri and Dwork which states that differen-
tial equations with an arithmetically well-behaved basis of solutions, should
arise as factors of a Gauss-Manin system. Integrality of the coefficient is
an example of being well-behaved. Other (not necessarily equivalent) de-
scriptions are, having a basis of G-function solutions (see [1]) or nilpotent
p-curvature for almost all primes p (see the references to Dwork’s work). Be-
side this interest in the arithmetic of linear differential equations Questions
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1 and 2 are also of importance to the construction of irrationality proofs,
as exemplified by Apéry’s recurrence. Recently, integrality questions have
also been connected with problems in mirror-symmetry (see [13]).

Amused by Question 1 Don Zagier has carried out a large search for
recurrences of the form,

(n + 1)2un+1 − An(n + 1)un + Bn2un−1 = λun, u0 = 1, u1 = λ

where A, B are given rational integers. Note that this recursion is slightly
different from (2) in that B need not be −1 here. For a search in the domain
of rational integers |A| ≤ 250, 0 ≤ u1 ≤ 100, |u2| ≤ 1000 he found 36
recurrences which allow an integral solution un. Of these, only 7 satisfied
the additional condition B(A2 − 4B) �= 0. This corresponds to the fact that
the corresponding linear differential equation has exactly four singularities.
Here is their list,

case# A B λ singular points
#1 0 -16 0 1/4, −1/4, 0, ∞
#2 7 -8 2 −1, 1/8, 0, ∞
#3 9 27 3 (3 ± √−3)/18, 0, ∞
#4 10 9 3 1, 1/9, 0, ∞
#5 11 -1 3 (11 ± 5

√
5)/2, 0, ∞

#6 12 32 4 0, 1/4, 1/8, ∞
#7 17 72 6 1/8, 1/9, 0, ∞

The singular points in this table are the singular points corresponding to
the linear differential equation. Notice that the set of singularities of cases
#2,#4 and #7 are equivalent via Möbius transformations. It turns out that the
differential equations are also equivalent with respect to these transforma-
tions. The same remark holds for the cases #1 and #6. One may conjecture
that up to the transformation un → cnun these are the only cases where we
find integral solutions for the recurrence. It has been pointed out by Zagier
that these cases are closely related to the theory of classical modular forms.

In a similar vein one may also note that in these examples the differ-
ential equations are a pullback of a hypergeometric equation by a rational
function. It is a finite amount of work to compute all Fuchsian differential
equations of the form (1) which are rational pullback of a hypergeometric
equation. It turns out that the hypergeometric equation can always be taken
with parameters α = 1/12, β = 5/12, γ = 1. Here are the results, up to
equivalence after Möbius transformations in z,
Case A: (z3 − z)y′′ + (3z2 − 1)y′ + zy = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
27z8(1 − z2)
1024b(z)3

)
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where b(z) = 1 − z2 + z4/16.

Case B: (z3 − z)y′′ + (3z2 − 1)y′ + zy = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
27z4(1 − z2)2

4b(z)3

)

where b(z) = 1 − z2 + z4/16.

Case C: z(z − 1)(8z + 1)y′′ + (24z2 − 14z − 1)y′ + (8z − 2)y = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
1728z6(z − 1)2(1 + 8z)

b(z)3

)

where b(z) = 1 + 8z − 16z3 + 16z4.

Case D: z(z2 + 11z − 1)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
1728z5(1 − 11z − z2)

b(z)3

)

where b(z) = 1 − 12z + 14z2 + 12z3 + z4.

Case E: z(3z2 − 3z + 1)y′′ + (3z − 1)2y′ + (3z − 1)y = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
−64z3(1 − 3z + 3z2)3

b(z)3

)

where b(z) = (1 − z)(1 − 3z + 3z2 − 9z3)
Case F: z(3z2 − 3z + 1)y′′ + (3z − 1)2y′ + (3z − 1)y = 0
Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣
∣
∣
∣
−64z9(1 − 3z + 3z2)

729b(z)3

)

where b(z) = (1 − z)(1 − 3z + 3z2 − z3/9).
Note that we find four different differential equations, which corresponds

precisely to Zagier’s list modulo a simple Möbius transformation in z. The
six rational pullback functions that we have written down correspond pre-
cisely to the j-invariants of the six stable families of elliptic curves over
P

1 with four singularities. In [3] one can find this complete list. The reason
that some of the corresponding Picard-Fuchs coincide, such A with B and
E with F, is that the corresponding families of elliptic curves are modular
with modular groups that are conjugate in SL(2, R).

One may suspect that the full list of positive answers to Question 2 is pro-
vided by our list of four differential equations and their Möbius transforms
in z. But we seem to be very far from proving this.
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Since the above mentioned global questions seem so difficult to deal
with we propose in this paper a local approach. Fix a prime number p and
let kp be the maximal unramified extension of Qp. Let Kp be its completion
and let Ωp = {a ∈ Kp| |a|p ≤ 1} be its ring of integers. The maximal
ideal is generated by p and the quotient field Ωp(mod p) is simply Fp. Let
Bp ⊂ Kp[[z]] be the set of power series uniformly bounded in the open unit
disc, that is,

∑

n≥0

unzn ∈ Bp ⇐⇒ ∃ b : |un|p ≤ b for all n ≥ 0

By Up we denote the set of powerseries in Kp[[z]] with p-adic radius of
convergence at least 1. Notice that Ωp[[z]] ⊂ Bp ⊂ Up. Note also that Bp, Up

are Kp-vector spaces. To make our methods work we have to assume that
a ∈ Ωp and the discriminant of P is a unit in Ωp. We now ask the following
local question,

Question 3 Given a ∈ Ωp with a2 + 4 ∈ Ω×
p . For which λ ∈ Kp does the

equation (1) have a solution in Bp, or in Up ?

In [9], at the end of the introduction, we see that problems dealing with
accessory parameters are considered to be among the main problems in the
theory of p-adic differential equations. It is for this reason that we refer to
Question 3, and also its generalisation to more general differential equations,
as Dwork’s accessory parameter problem.

We can also view Question 3 as an eigenvalue problem. Consider the
linear differential operator L = zPD2 +(zP )′D+z, where D = d

dz , an an
operator on Bp or Up. Then Question 3 simply comes down to the eigenvalue
problem

Lu = λu, u ∈ Up or u ∈ Bp. (3)

Before we state the theorems of this paper we like to sketch the obser-
vations concerning recursion (2) that have led to these theorems. When we
look at recursion (2) one may expect factors p in the denominator when-
ever we divide by (n + 1)2 containing a factor p. However, it turns out
that things are not so bad. Suppose we have found a value of λ for which
u0, u1, . . . , upk−1 ∈ Ωp. The computation of upk via (2) may introduce de-
nominators p or not. Suppose not. Then, very surprisingly, it turns out that
denominators p will not show up for n = pk, pk + 1, . . . , pk+1 − 1 even
though we divided by powers of p at several stages during the recurrence.
This is proved in Proposition 2.

Suppose, on the other hand that upk �∈ Ωp. Then it is shown in Propo-
sition 1 that |umpk |p ≥ |upk |mp for all m ≥ 1. Hence the p-adic radius of
convergence of the power series u(z) is strictly less than 1. All this explains
the following theorem.
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Theorem 1 Suppose there exist u(z) ∈ Up and λ ∈ Kp such that Lu = λu
and u(0) = 1. Then λ ∈ Ωp and u ∈ Ωp[[z]].

This Theorem is a consequence of a theorem by Adolphson, Dwork and
Sperber [2, p 249], but here we give a self-contained proof.

We remark here very explicitly that Theorem 1 does not generalise to
differential equations whose local exponent differences are different from
zero.

To describe the second theorem we first consider L as a linear operator
on Fp[z]. In Sect. 2 we see that it maps the space of polynomials of degree
< p to itself. If the eigenvalue problem Lu = λu on this space has p
distinct eigenvalues λ1, λ2, . . . , λp ∈ Fp we shall say that the eigenvalue
problem is non-degenerate mod p. This is what will be assumed throughout
the paper. When this is the case, there exist p distinct eigenpolynomials
f1, f2, . . . , fp ∈ Fp[z] of degree < p which we normalise by fi(0) = 1. We
can now state our second theorem.

Theorem 2 Assume that the eigenvalue problem Lu ≡ λu(mod p) is non-
degenerate. Then there is a one-to-one correspondence between the set of
all u ∈ Ωp[[z]], λ ∈ Ωp such that Lu = λu and the set of all sequences of
indices i0, i1, i2, . . . ∈ {1, . . . , p}. The correspondence is given by

u(z) ≡ fi0(z)fi1(z)pfi2(z)p2 · · · fik(z)pk · · · (mod p)

Moreover, λpk

ik
is precisely minus the coefficient of zpk

in u considered mod
p.

Finally we describe the shape of the spectrum of the operator L on the
spaces Up, Bp or, equivalently, Ωp[[z]]. Note that for any λ ∈ Ωp there
exists a unique solution uλ(z) ∈ Kp[[z]] with uλ(0) = 1 where the suffix
λ indicates the dependence of u on λ. We now like to find λ such that
uλ ∈ Ωp[[z]]. To do this we follow our recursion (2). Since λ ∈ Ωp we
have that uλ(n) ∈ Ωp for n = 0, 1, . . . , p − 1, where uλ(n) denotes the
n-th coefficient of uλ. We easily see that uλ(p) is a polynomial of degree
p in λ with integral coefficients, divided by p2. Hence integrality of uλ(p)
puts a mod p2 constraint on a degree p polynomial in λ. Assuming the non-
degeneracy condition we find p residue classes mod p2 of values of λ for
which uλ(p) ∈ Ωp. Choose such a class and denote it by λ0 + p2β with
β ∈ Ωp. We can now continue our recurrence, and as we explained above,
we will not meet any trouble until we hit uλ(p2). Proposition 3 then tells
us that uλ(p2) equals modulo Ωp a p-th degree polynomial in Ωp[β]/p2.
The non-degeneracy condition will give us p congruence classes mod p2 of
values of β which will make uλ(p2) integral. Choose such a class and again
continue. This process can be carried out arbitrarily far and clarifies more
or less our third theorem.
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Fig. 1

Theorem 3 We assume the non-degeneracy condition described above.
Consider a directed tree graph in which to every node there correspond p
outgoing edges and 1 incoming edge, except at the root where we have only
p outgoing edges. To every node we can associate a number in Ωp such that
the following property holds. There is a one to one correspondence between
eigenvalues λ of Lu = λu, u ∈ Up and infinite directed paths starting at
the root. This correspondence is given by

λ = λ0 + λ1p
2 + λ2p

4 + · · · + λnp2n + · · ·
where the numbers λ0, λ1, λ2, . . . correspond to the nodes visited by the
path excluding the root of the tree.

Moreover, if a is algebraic over Qp then all eigenvalues of (3) lie in the
same finite unramified extension of Qp.

In particular this theorem implies that our spectral problem has a Cantor-
like set in Ωp as a spectrum. To illustrate the last theorem we consider the
example where a = 0 and p = 3. Consider the tree diagram in Fig. 1.
Consider the path beginning at the root and visiting the nodes with numbered
with 1, 6, 5, . . .. Then this path corresponds to the eigenvalue λ = 1 + 6 ·
9+5 ·92 + · · · of the spectral problem (3) in the case when a = 0 and p = 3.

Cantor-like sets as spectra of operators have occured at a few places in
the literature. A very nice example is associated to Hofstadter’s butterfly, see
[10]. Another reference can be found in a remarkable paper by the Chud-
novsky’s [5, Sect. 1.7]. It seems they have made extensive computations and
observed Cantor-like spectra experimentally.

A question which we like to see solved in this matter is the following.
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Question 4 Is there a continuous p to 1 map from Ωp to itself which stabilises
the set of eigenvalues? Presumably this would be connected to a better
understanding of Frobenius actions on the set of eigenvalues.

Acknowledgements. I would like to thank the Newton Institute of Mathematical Sciences
in Cambridge (U.K.) for its hospitality, which enabled me to finish the work on this paper. I
also like to thank Gilles Christol and Don Zagier for a number of valuable discussions which
helped to shape the paper in its final form.

2 Considerations modulo p

We consider the differential equation (1) modulo p, hence P = z2 + az − 1
with a, λ ∈ Fp. Given a we shall be interested in those values of λ for which
there exists a solution u ∈ Fp[[z]].

Lemma 1 Suppose that (1) modulo p has a solution in Fp[[z]]. Then there
is a unique polynomial solution u ∈ Fp[[z]] such that u(0) = 1 and
deg(u) < p. Moreover, the full set of solutions in Fp[[z]] is given by
{Q(zp)u(z) | Q(X) ∈ Fp[[X]]}.

Proof. We shall exploit the fact that if y is a solution of (1), then so is zpy,
since zp is constant with respect to differentiation in characteristic p. Let
v =

∑
n≥A vnzn ∈ Fp[[z]] with vA �= 0 be a solution of (1). Since the vn

also satisfy recursion (2) we see that, taking n = A − 1, A2vA = 0. Since
vA �= 0 we conclude that A ≡ 0(mod p). Hence z−Av is a powerseries
solution with a non-zero constant term. We denote this solution again by v
and may assume that v(0) = 1. Consider now recurrence (2) for n = p−1, p

02vp = −λvp−1 + vp−2

vp+1 = −λvp + 02vp−1

From this recurrence we see that v0, v1, . . . , vp−1, 0, 0, . . . is also a solution
of (2). Hence

∑p−1
n=0 vnzn is a polynomial solution of (1) of degree < p and

constant term 1. Call it u(z). Let v(z) be any solution in Fp[[z]]. Then v(z)−
v(0)u(z) is another such solution and by the arguments above it is divisible
by a power of zp. Divide by this power to obtain a new powerseries solution
and repeat the process. In this way we see that the full set of powerseries
solutions is given by {Q(zp)u(z) | Q(X) ∈ Fp[[X]]}. �

The above lemma shows that finding powerseries solutions of (1) in
characteristic p comes down to finding polynomial solutions of degree
< p. In this respect we make a few remarks. Denote the linear operator
zP (d/dz)2 +(zP )′(d/dz)+z by L. Now notice that L(zk) is a polynomial



On Dwork’s accessory parameter problem 433

of degree ≤ k + 1 for all k and in particular,

L(zp−1) = (p − 1)(p − 2)zp + 3(p − 1)zp + zp + terms of degree < p

= p2zp + terms of degree < p

Hence, in characteristic p the operator L maps polynomials of degree < p
to itself. Denote by V the Fp-vector space of polynomials in Fp[z] of degree
< p. Then L : V → V .

Writing down the eigenvalue equation for L as an operator on V is easy.
We consider λ as an indeterminate and follow the recurrence

u1 = −λu0 (4)

(n + 1)2un+1 = (an(n + 1) − λ)un + n2un−1 1 ≤ n < p − 1 (5)

and define

F (λ) = (a(p − 1)p − λ)up−1 + (p − 1)2up−2. (6)

Note that F (λ) is a polynomial of degree p in λ. The condition F (λ) = 0
gives us the eigenvalue equation. This is precisely the eigenvalue problem
modulo p alluded to in the paragraph before Theorem 2 in the Introduction.

Lemma 2 Consider the differential equation

qy′′ + q′y′ + (z − λ)y = 0 (7)

with q ∈ Fp[z], λ ∈ Fp with q monic and cubic with non-zero discriminant.
Suppose that the equation has a solution u ∈ Fp[z] of degree < p. We
assume that the leading coefficient of u is 1. Then, for any zero α of q we
have u(α)2 = q′(α)p−1. Moreover, u has exact degree p − 1.

Proof. Without loss of generality we may assume that α = 0, i.e. q(0) = 0.
Note that T : z �→ q′(0)/z has the property that q(T (z)) = q′(0)2q(z)/z4.
In other words, T permutes the singularities of (7). Take the pullback of
(7) by T , i.e. replace z by q′(0)/z in (7), and then replace y by z−1y. We
obtain a new differential equation which turns out to be the same as (7).
This can be checked by straightforward computation. As a consequence
we find that z−1u(T (z)) is also a solution of (7). Hence zp−1u(T (z)) is
a polynomial solution of (7) of degree < p and by the uniqueness of u
we find that there exists µ such that zp−1u(T (z)) = µu(z). Since T is an
involution, we find that µ2 = q′(0)p−1. Moreover, by taking z = ∞ in
u(q′(0)/z) = µz1−pu(z) we get that u(0) = µ since the leading coefficient
of u is 1. Hence u(0)2 = µ2 = q′(0)p−1 as asserted �
Corollary 1 Consider the differential equation (1) mod p. Suppose that it
has a solution u ∈ Fp[z] of degree p − 1 and assume u(0) = 1. Let l(u) be
the leading coefficient of u. Then l(u) = ±1.
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Proof. Apply the previous Lemma to q(z) = zP (z), α = 0 and the solution
u/l(u). We find that (u(0)/l(u))2 = 1. Since u(0) = 1 our Corollary
follows. �
Lemma 3 Suppose that equation (7) has a polynomial solution u of degree
< p. Assume that u has leading coefficient 1. Then,

1. q(α) = 0 ⇒ u(α) �= 0
2. u has only simple zeros.
3. Dp−1(1/qu2) = −1/qp where D = d/dz.

Proof. Suppose q(α) = 0. After the substitution z → z+α we may assume
α = 0. From Lemma 1 we then see that u(0) �= 0.

Suppose that there is α such that q(α) �= 0 and u(α) = u′(α) = 0. Then,
by the use of (7) we recursively get that u′′(α) = · · · = u(p−1)(α) = 0.
Hence u(z) ≡ 0.

To show the third part we determine the partial fraction expansion of
1/qu2. Let Q be the set of zeros of q and U the set of zeros of u. Then there
exist qα, aβ, bβ ∈ Fp such that

1
qu2 =

∑

α∈Q

qα

z − α
+
∑

β∈U

aβ

(z − β)2
+

bβ

z − β

Differentiate p − 1 times. Then, using (p − 1)! ≡ −1 (mod p) (Wilson’s
theorem),

Dp−1
(

1
qu2

)

= −
∑

α∈Q

qα

(z − α)p
−
∑

β∈U

bβ

(z − β)p

To determine bβ we write

qu2 = (q(β) + q′(β)(z − β) + . . .)(u′(β)(z − β)
+u′′(β)(z − β)2/2 + . . .)2

= q(β)u′(β)2(z − β)2(1 +
q′(β)
q(β)

(z − β) + . . .)

(1 +
u′′(β)
u′(β)

(z − β) + . . .)

= q(β)u′(β)2(z − β)2(1 +
q′(β)u′(β) + q(β)u′′(β)

q(β)u′(β)
(z − β) + . . .)

Using (7) with z = β and u(β) = 0 we see that q′(β)u′(β) + q(β)u′′
(β) = 0. Hence

1
qu2 =

1
q(β)u′(β)2

1
(z − β)2

(1 + O((z − β)2))
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So we conclude that bβ = 0 for all β ∈ U .
Finally, qα = 1/(q′(α)u(α)2) and using Lemma 2 this implies qα =

1/q′(α)p. Hence

Dp−1 1
qu2 = −

∑

α∈Q

1
q′(α)p(z − α)p

= − 1
qp

.

�

Corollary 2 Let assumptions be as in the previous Lemma and suppose
in addition that q = zP (z), where P is quadratic and P (0) = 1. Define
the operator Vp : Fp[[z]] → Fp[[z]] by Vp(

∑
k≥0 gkz

k) = (
∑

k≥0 gkpz
k).

For any g =
∑

k≥0 gkz
k ∈ Fp[[z]] denote by gσ the power series gσ =

∑
k≥0 gp

kz
k. Then,

Vp

(
1

Pu2

)

=
1

P σ

Proof. By Wilson’s theorem we see that for every g ∈ Fp[[z]] we have

Dp−1
(g

z

)
= −(Vpg)(zp)

zp

We apply this observation to g = 1/Pu2 and use the previous Lemma to
obtain

1
zpP (z)p

=
(Vp(1/Pu2))(zp)

zp

Multiply by zp and observe that P (z)p = P σ(zp) to find 1/P σ(zp) =
(Vp(1/Pu2))(zp). Our Corollary follows after we replace zp by z. �

Corollary 3 Let f1, f2, . . . , fp be the normalised eigenpolynomials of the
eigenvalue problem Lu ≡ λu(mod p). Then, for any finite sequence of
indices i0, i1, . . . , ik−1 we have

(Vp)k

(
1

P (fi0(z)fi1(z)p · · · fik−1(z)pk−1)2

)

≡ 1
P σk (mod p).

Proof. Apply Vp to

1

P (fi0f
p
i1

· · · fpk−1

ik−1
)2

(mod p).
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Use Corollary 2 with u = fi0 to obtain

Vp



 1

P (fi0 · · · fpk−1

ik−1
)2





≡ Vp

(
1

Pf2
i0

)
1

(fσ
i1

(fσ
i2

)p · · · (fσ
ik−1

)pk−2)2
(mod p)

≡ 1
P σ(z)(fσ

i1
(fσ

i2
)p · · · (fσ

ik−1
)pk−1)2

(mod p).

After repeating this operation k times we find our Corollary. �

3 Proof of the main theorems

Let L be the differential operator L = zPD2 + (zP )′D + z. Given any
λ ∈ Ωp there exists a power series uλ ∈ Kp[[z]] such that (L − λ)uλ = 0
and uλ(0) = 1. The coefficients of uλ are of course determined by the
recursion (2). We denote the n-th coefficient of uλ by uλ(n). For any k ≥ 0
we denote by uk,λ the truncation polynomial

uk,λ =
∑

n<pk

uλ(n)zn.

We note that, after a short computation,

(L − λ)uk,λ = p2k(uλ(pk)zpk−1 + uλ(pk − 1)zpk
). (8)

Finally we introduce the power series gk,λ ∈ Kp[[z]] as the quotient uλ/uk,λ.
If the dependence of uλ, uk,λ, gk,λ on λ is not relevant or if notations

tend to become cumbersome we usually drop the suffix λ from the notation.

Lemma 4 Let u, uk, gk be as above. Then

gk = 1 −
∫ z

0

1
Pu2

kz

∫ z

0
gkuk(L − λ)ukdz. (9)

Proof. From (L − λ)u = 0 we derive (L − λ)(ukgk) = 0 and hence

2zPu′
kg

′
k + zPukg

′′
k + (zP )′ukg

′
k + gk(L − λ)uk = 0.

Multiply by uk and we get

(zPu2
kg

′
k)

′ = −ukgk(L − λ)uk
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Hence

zg′
k = − 1

Pu2
k

∫ z

0
ukgk(L − λ)ukdz

After divison by z and again an integration from 0 to z we obtain our
functional equation for gk. �

For the proof of our theorems we introduce some more notation. First of
all we note, using (8), that uk(L − λ)uk/p2k has the form

v2pk−1z
2pk−1 + · · · + vpk−1z

pk−1

where, in particular, v2pk−1 = u(pk − 1)2 and vpk−1 = u(pk).
We expand 1/Pu2

k as a power series

1
Pu2

k

= 1 + b1z + b2z
2 + · · · ∈ Kp[[z]]

Note that the bi are in Ωp if uk ∈ Ωp[z]. Let gk(z) = 1+γ1z+γ2z
2+γ3z

3+
· · ·. To avoid cluttering of indices we have suppressed the dependence of
the γi on k. Since we assume k to be fixed throughout the proofs, this is no
serious problem.

The functional equation (9) now implies the following recurrence for the
coefficients γn,

γn = −p2k

n

∑

r+s+t=n−1

br
vsγt

s + t + 1
(10)

Proposition 1 Let k ≥ 0 and suppose u(n) ∈ Ωp for n = 0, 1, . . . , pk − 1
and R = |u(pk)|p > 1. Then, for any m ≥ 1 we have

1. |u(mpk)|p = Rm/|m!|2p
2. |u(n)|p < Rm/|m!|2p for all n < mpk.

Proof. We use the recursion (10) to show the inequalities for the coefficients
γn instead of u(n). Using the relation

u(z) =
∞∑

n=0

u(n)zn = uk(z)gk(z) = uk(z)(1 + γ1z + γ2z
2 + · · ·)

the inequalities for the u(n) follow.
We proceed by induction on m. For m = 1 the statement is clear. Now

suppose that statements (1) and (2) are proved for m = 1, 2, . . . , M . Let n
be such that Mpk < n ≤ (M + 1)pk. Consider recurrence (10). We will
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show that each term on the right hand side with t < Mpk has absolute value
strictly less than RM+1/|(M + 1)!|2p. Note that we have trivially

∣
∣
∣
∣
p2k

n

∣
∣
∣
∣
p

≤
∣
∣
∣
∣

pk

M + 1

∣
∣
∣
∣
p

.

Suppose first that t is not divisible by pk and t < Mpk. Choose L such that
(L−1)pk < t < Lpk. Then mins=pk−1,...,2pk−1 |s+t+1|p = |(L+1)pk|p.
Hence
∣
∣
∣
∣
p2k

n
br

vsγt

s + t + 1

∣
∣
∣
∣
p

< R

∣
∣
∣
∣

pk

M + 1
γLpk

(L + 1)pk

∣
∣
∣
∣
p

=
RL+1

|(M + 1)(L + 1)|p
1

|L!|2p
≤ RM+1

|(M + 1)!|2p
.

In the estimate we have used the inequalities |br|p ≤ 1, |vs|p ≤ R plus
the fact that |γt| < |γLpk | = RL/|L!|2p, which follows from our induction
hypothesis.

Suppose now that t = Lpk for some L ≤ M − 1. Then

min
s=pk−1,...,2pk−1

|s + t + 1|p = min(|(L + 1)pk|p, |(L + 2)pk|p)

≥ |(L + 1)(L + 2)pk|p.
Hence

∣
∣
∣
∣

pk

M + 1
br

vsγt

s + t + 1

∣
∣
∣
∣
p

≤
∣
∣
∣
∣

pk

M + 1
1

(L + 1)(L + 2)pk

∣
∣
∣
∣
p

RL+1

|L!|2p
≤ RL+1

|(M + 1)!|2p
<

RM+1

|(M + 1)!|2p
.

So we have shown that each term on the right of (10) with t < Mpk has
absolute value < RM+1/|(M + 1)!|2p.

Note that if n < (M + 1)pk the inequalities s + t < n and s ≥ pk − 1
imply that t < Mpk. Hence |γn|p < RM+1/|(M +1)!|2p, as asserted in part
(2).

If n = (M + 1)pk there is only one term with t ≥ Mpk namely the
term with r = 0, s = pk − 1 and t = Mpk. A simple computation shows
that it has absolute value RM+1/|(M + 1)!|2p, which shows part (1) of our
Proposition. �
Proposition 2 Suppose that the eigenvalue problem Lu ≡ λu(mod p) has
p distinct eigenvalues in λ1, λ2, . . . , λp ∈ Fp. Let f1, f2, . . . , fp be the cor-
responding normalised eigenpolynomials of degree p − 1.

Suppose we have u(n) ∈ Ωp for n = 0, 1, . . . , pk − 1. Suppose in
addition that u(pk) ∈ Ωp. Then the following two properties hold,
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1. There exist indices i0, i1, . . . , ik−1 such that

uk(z) ≡ fi0(z)fi1(z)pfi2(z)p2 · · · fik−1(z)pk−1
(mod p).

Moreover, λpl

il
≡ −u(pl)(mod p) for 0 ≤ l < k.

2. We have u(n) ∈ Ωp for n = 0, 1, 2, . . . , pk+1 − 1. Moreover the coeffi-
cients γn of γk(z) = u(z)/uk(z) are zero mod p if n is less than pk+1

and not divisible by pk. The coefficients Gm = γmpk satisfy the partial
recurrence

(m + 1)2Gm+1 ≡ (apk
m(m + 1) − Λ)Gm + m2Gm−1(mod p)

for m = 1, 2, . . . , p − 2 with initial values G0 = 1, G1 ≡ −Λ and
where Λ ≡ −u(pk)(mod p).

Proof. First we will show that part (2) is a consequence of part (1) for any
k ≥ 1. Then we prove part (1) by induction on k = 1, 2, 3, . . ..

First of all we like to note that it follows from (1) that u(pk − 1) ≡
±1(mod p). This follows from part (1) and Corollary 1 which tells us that
fi(z) has leading coefficient ±1 for every i.

Consider the recurrence (10) again. Note that by the assumption u(pk) ∈
Ωp we have that vs ∈ Ωp for all s. Whenever n < pk+1 we see that
p2k/n(s + t + 1) is a p-adic integer. Hence by recursion, γn ∈ Ωp for
0 ≤ n < pk+1. As a consequence, u(n) ∈ Ωp for n = 0, 1, 2, . . . , pk+1 −1.
Furthermore, if n is not divisible by pk then p2k/n(s+ t+1) is always zero
mod p. Hence γn ≡ 0(mod p) for all n < pk+1 not divisible by pk.

We now derive a recursion relation for the numbers γmpk modulo p with
m = 0, 1, 2, . . . , p − 1.

Recursion (10) yields for all m ≥ 1,

mγmpk = −pk
∑

r+s+t=mpk−1

br
vsγt

s + t + 1
(11)

Now assume that also m < p. Note that a term on the right is zero modulo
p if pk does not divide s + t + 1. Hence, in considerations modulo p only
the terms with r of the form r = ρpk are relevant,

mγmpk ≡ −
m−1∑

ρ=0

bρpk

∑

s+t+1=(m−ρ)pk

vsγt

m − ρ
(mod p)

Now we use that γt ≡ 0(mod p) unless pk|t. Putting t = τpk and s =
σpk − 1 we get

mγmpk ≡ −
m−1∑

ρ=0

bρpk

∑

σ+τ=m−ρ

vσpk−1γτpk

m − ρ
(12)



440 F. Beukers

≡ −
m−1∑

ρ=0

bρpk

(−Λγ(m−ρ−1)pk + γ(m−ρ−2)pk

m − ρ

)

(mod p) (13)

In the latter congruence we used the fact that vpk−1 = u(pk) = −Λ and
v2pk−1 = u(pk − 1)2 ≡ 1(mod p). Note that

∑

ρ≥0

bρpkzr ≡ (Vp)k

(
1

Pu2
k

)

(mod p)

Using the fact from part (1) that uk ≡ fi0 · · · fpk−1

ik−1
(mod p) and Corollary

3 we derive ∑

ρ≥0

bρpkzr ≡ 1
P σk (mod p)

Write
G(z) =

∑

r≥0

γrpkzr

Then (3) implies that

zP σk
G′ ≡

∫ z

0
(z − Λ)Gdz(mod p, zp)

After differentiation,

zP σG′′ + (zP σ)′G′ + (z − Λ)G ≡ 0(mod p, zp−1)

Hence the coefficients of G satisfy the partial recurrence mod p of assertion
(2).

Let us now prove statement (1) using induction on k ≥ 1. For k = 1 the
statement is obviously true. Let us assume it is proved for k = 1, 2, . . . , K.
The induction hypothesis implies that u(pK+1) ∈ Ωp. Hence γpK+1 ∈ Ωp.
Given this, the left-hand side of (11) with m = p is in Ωp. On the right hand
side all terms with s+t+1 < pk+1 are p-adically integral. Terms with s+t+
1 = pK+1 are of the form vsγt/p. Sinceγt ≡ 0(mod p) if t is not divisible by
pK we conclude that the sum of the remaining terms, that is (vpK−1Gp−1 +
v2pK−1Gp−2)/p, is in Ωp. Hence −ΛGp−1 + Gp−2 ≡ 0(mod p). Using
the formula (6) for eigenvalues of the mod p problem, we conclude that
Λ is an eigenvalue of the eigenvalue problem L̃u ≡ Λu(mod p) where
L̃ denotes the operator L with a replaced by apK

. Choose iK such that

λpK

iK
≡ Λ(mod p). Then we see that

γK(z) ≡ (fiK )σK
(zpK

)(mod p, zpK+1
)

hence
uK+1(z) ≡ uk(z)(fiK (z))pK

(mod p)
which completes our induction step. �
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Proposition 3 Suppose that the eigenvalue problem Lu ≡ λu(mod p) has
p distinct eigenvalues in λ1, λ2, . . . , λp ∈ Fp. Let f1, f2, . . . , fp be the cor-
responding normalised eigenpolynomials of degree p − 1.

Let k ≥ 0. Let λ0 ∈ Ωp and denote the elements of the residue class
λ0(mod p2k) by λ = λ0 + p2kβ, β ∈ Ωp. Suppose the following holds,

1. uλ(n) ∈ Ωp for n = 0, 1, . . . , pk and all β ∈ Ωp.
2. uλ(n) ≡ uλ0(n)(mod p2) for all n = 0, 1, . . . , pk − 1 and all β ∈ Ωp.
3. There exist A, B ∈ Ωp such that uλ(pk) ≡ A + Bβ(mod p2) for all

β ∈ Ωp.

Then we have, with the notation λ = λ0 + p2kβ, β ∈ Ωp that

1. uλ(n) ∈ Ωp for all n < pk+1 and all β ∈ Ωp.
2. For every n < pk+1 there is a polynomial tn ∈ Ωp[z] of degree ≤ n/pk

such that uλ(n) ≡ tn(β)(mod p2) for all β ∈ Ωp.
3. There is a polynomial T ∈ Ωp[z] of degree ≤ p such that uλ(pk+1) −

T (β)/p2 ∈ Ωp for all β ∈ Ωp.

4. Let T be as in (3). Then, up to a constant factor we have T (x) ≡ F σk
(A+

Bx)(mod p), where F is the characteristic polynomial of the eigenvalue
problem Lu ≡ λu(mod p).

Proof. Statement (1) is a direct consequence of Proposition 2 part (2). To
prove statement (2) we invoke the recursion (10). Since p2k/n(s + t + 1) is
p-adically integral if n < pk+1 the recursion

γn =
∑

r+s+t=n−1

p2k

n(s + t + 1)
brvsγt(mod p)

has p-adically integral coefficients whenever n < pk+1. Remember that
the coefficients vs come from the product uλ,k(z)(uλ(pk)zpk−1 + uλ(pk −
1)zpk

). Since uλ(pk) equals a linear polynomial in β modulo p2, we see
that all vs equal polynomials in β of degree at most 1 modulo p2. Moreover,
vs = 0 if s < pk − 1. This means that the indices t on the right hand side of
the above recursion all satisfy t ≤ n − 1 − (pk − 1) = n − pk. Using this
recursion it is now a simple matter to show that the γn modulo p2 are equal
to polynomials in β of degree ≤ n/pk for all n < pk+1. Assertion (2) then
follows immediately after using u(z) = uk(z)gk(z)

To prove assertion (3) we look at recursion (10) for n = pk+1 and
consider it modulo Ωp. Observe that the worst denominator that can occur
is p2 coming from the terms with s + t + 1 = pk+1. Since all γt are
polynomials of degree ≤ t/pk in β modulo p2 and the vs are at most linear
in β mod p2 and vs = 0 when s < pk − 1, it is now easy to see that γpk+1

equals an expression of the form T (β)
p2 modulo Ωp where T is a polynomial
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of degree ≤ p. After using uλ(z) = uk,λ(z)gk,λ(z) we see that the same
statement holds for uλ(pk+1), as asserted in part (3).

To prove assertion (4) we multiply (10) with n = pk+1 by p and consider
it modulo Ωp. Note that all terms on the right hand side with s+t+1 < pk+1

are in Ωp. Of the terms with s+ t+1 = pk+1 the ones with pk not dividing t
are in Ωp, because, by Proposition (2), γt ≡ 0(mod p) for such t. Hence we
are left with t = (p− 1)pk, (p− 2)pk and s = pk − 1, 2pk − 1 respectively.
Let us use the notation Gm = γmpk from Proposition 2. Then it follows that

pGp ≡ T (β)
p

≡ 1
p
(vpk−1Gp−1 + v2pk−1Gp−2)(mod Ωp)

≡ 1
p
(−(A + Bβ)Gp−1 + Gp−2)(mod Ωp)

So, T (β) ≡ −(A + Bβ)Gp−1 + Gp−2(mod p). From the recurrence for
Gm in Proposition 2 and the definition of the cahracteristic polynomial F in
(6) we now infer that T (β) = F σk

(A + Bβ). Hence assertion (4) follows.
�

Proof of Theorem 1. Proposition 1 tells us that if |upk |p > 1 for some k ≥ 0
then u(z) has radius of convergence strictly less than 1. In particular this
means that u(1) = −λ ∈ Ωp. Moreover, upk ∈ Ωp for all k ≥ 0. But then
application of Proposition 2 part (2) implies that un ∈ Ωp for all n ≥ 0. �
Proof of Theorem 3. We shall describe how to get successive approxima-
tions to any of the eigenvalues λ of (3). This should suffice to prove our
Theorem.

Let us start by taking λ ∈ Ωp. Then uλ(n) ∈ Ωp for all n < p. Ap-
plication of Proposition 3 parts (3),(4) with k = 0 tell us that there ex-
ists a p-th degree polynomial T such that uλ(p) − T (λ)/p2 ∈ Ωp and
T (x) ≡ F (x)(mod p). By the non-degeneracy assumption F has p dis-
tinct roots in Fp. Hence they can be lifted to p distinct roots mod p2 of
T (x)(mod p2). Choose one of these roots, say λ0. Then all choices λ in the
residue class λ0(mod p2) will make uλ(p) integral. Write λ = λ0 + p2β.
Then

T (λ0 + p2β)/p2 ≡ T (λ0)/p2 + T ′(λ0)β(mod p2).

Putting T (λ0)/p2 = A and T ′(λ0) = B we see that the conditions of
Proposition 3 are now satisfied for k = 1. Application of the Proposition tells
us of the existence of another polynomial T satisfying uλ(p2)−T (β)/p2 ∈
Ωp for all β ∈ Ωp. We know that T (x) ≡ F σ(A + Bx)(mod p) and again
get p values of β that make uλ(p2) integral. Choose such a solution, call
it λ1 and replace β by λ1 + p2β. Now repeat the whole process to make
uλ(p3) integral.
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We also see that, since we basically solve F ≡ 0 all the time, the numbers
will lie in the same finite extension of Qp(a). �
Proof of Theorem 2. The factorisation of u mod p is a direct consequence
of Proposition 2 part (1) as we let k → ∞. The fact that the eigenvalue of
fik is −upk(mod p) follows from Proposition 2 part (2).

To show that any sequence i0, i1, i2, . . . corresponds to a solution of
Lu = λu we go back to the proof of Theorem 3. There, at every index pk

we had to choose a value of β such that F σk
(A + Bβ) ≡ 0(mod p). By

choosing β such that A + Bβ = λpk

ik
we can see to it that u(z) factors with

the prescribed sequence of factors fi0 , fi1 , fi2 , . . .. �
Finally, in the introduction we promised to show that the only value

λ ∈ Z for which the recurrence

(n + 1)2un+1 = (11n2 + 11n − λ)un + n2un−1, u0 = 1, u1 = −λ

has a solution in Z is the value λ = −3. Suppose we have a solution and
let u(z) ∈ Z[[z]] be its generating function. We consider u(z) modulo 3.
According to Theorem 2 there is a factorisation of the form

u(z) = fi0(z)fi1(z)3fi2(z)9 · · · (mod 3)

where the fi(z) are the normalised polynomials of degree 2 which are eigen-
polynomials to the eigenvalue equation (6). Since u(z) ∈ Z[[z]] the poly-
nomials fik(z) should all be in F3[z]. However, the eigenvalue equation
(6) in our case reads λ(λ2 + 1) ≡ 0(mod 3). So there is a unique eigen-
value in F3 and hence fik(z) is uniquely determined. This means that the
sequence i0, i1, i2, . . . is uniquely determined. This corresponds to a unique
eigenvalue λ ∈ Q3 and thus, at most one eigenvalue in Z.
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analysis 1982/83, exposé e 9, Inst. Henri Poincar’e, Paris, 1984

9. B. Dwork, G. Gerotto, F.J. Sullivan, An introduction to G-functions, Annals of Math.
Studies 133, Princeton Univ. Press 1994

10. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and
irrational magnetic fields, Phys. Rev. 14 (1976), 2239–2249

11. T. Honda, Algebraic differential equations, INDAM Symp. Math. XXIV (1981), 169–
204

12. N.M. Katz, Algebraic solutions of differential equations, Inv. Math. 18 (1972), 1–118
13. B. Lian, S.T. Yau, Arithmetic properties of mirror maps and quantum coupling, Comm.

Math. Phys. 176 (1996), 163–191


